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Abstract. Extraordinary structural organization known as emergence
is observed in partially ordered sets when a recently discovered func-
tional is minimized. Emergence creates the first structures, and feedback
reuses them to create hierarchies of structures. The partially ordered set
is the knowledge representation, the functional connects local behavior
to global phenomena, emergence and feedback correspond to inference,
and the structures and hierarchies to objects and inheritance hierarchies.
If intelligence includes the ability to solve problems, then the structures
represent intelligence and emergence represents the build up of intelli-
gence. Since the structures are mathematically obtained from first prin-
ciples, the finding is proposed as an explanation for the origin of intelli-
gence, and the functional as the key for AGI. Three previous computer
experiments, and another one reported here, duplicate higher functions
of the human brain and confirm the findings.
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1 Introduction

The phenomenon of emergence is frequently observed in many types of complex
dynamical systems when structures unexpectedly form in the course of evolu-
tion of the system. Despite many years of intense research, the phenomenon of
emergence remains unexplained, and a causal relationship between the proper-
ties or interactions of the components of the system and the resulting structures
has not been found. There is no comprehensive theory of emergence or suitably
fundamental model within which to situate emergence [1]. A phenomenological
characterization of emergence including precise terminology is available [2].

The original motivation for the present work was the author’s interest in
refactoring [3]. Refactoring is practiced by every software developer virtually all
of the time. The term was introduced for object-oriented (OO) code, but it was
soon extended to non-OO code [4] and non-software systems such as the law [5],
databases [6], and even bacteria [7]. Refactoring is a universal phenomenon, and
we all practice it all the time, for tasks ranging from preparing our daily schedule
to writing a scientific paper or a theory of Science. Refactoring, however, has
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always been considered as something that only humans can do. Tools have been
developed for software, of course, but they must operate under the guidance of a
human and can be modified or expanded only through human intervention. The
scope of refactoring is vast, and it has so far resisted full automation.

Work started with the publication in 2007 of the imperative form of the Ma-
trix Model of Computation (iMMC) [8], a universal virtual machine that inter-
faces easily with software and supports refactoring transformations. The iMMC
consists of a matrix of sequences and a matrix of services, both sparse [9]. Soon it
was noticed that certain canonical submatrices of the matrix of services had ex-
traordinary self-organizing properties [10], and the canonical form of the MMC
(cMMC) and the Scope Constriction Algorithm (SCA) were introduced. SCA
uses a functional, defined over the set of symmetric permutations of the canon-
ical matrix. The functional assigns a cost to each permutation, not necessarily
unique, and SCA finds the subset of permutations with the minimum cost. Re-
markably, the matrices in the subset are organized and contain structures that
did not exist in the original unpermuted matrix, even though nothing had been
done to achieve such result. This is a purely mathematical result. Applications
to refactoring [11] and image recognition [12] were published.

A detailed analysis of the inner workings of SCA was then undertaken, and
resulted in publication [13], where general transformations from software to the
cMMC were proposed, the basics of MMC supervised learning were covered, and
an extensive case study on refactoring was included, where a Java program was
converted to C (manually) and randomly rearranged to remove all OO features
and organization, and automatically refactored by SCA, resulting in objects
similar to the original ones. It became clear that a very strong connection existed
between the canonical model and AGI.

At that point, it was noticed that a one-one correspondence existed between
canonical matrices and partially ordered sets, and that the properties being stud-
ied were indeed properties of partially ordered sets, one of the most prevalent
and fundamental structures in Mathematics. That explained the vast scope pre-
viously observed, and led to publication [14], where the fundamental mathemat-
ical principles underlying the observed properties were anticipated, experiments
were discussed, and the hypothesis was advanced that those same principles
could be used to explain emergence and intelligence.

The present work expands on the theory and claims that: (1) a system sus-
ceptible of mathematical analysis can be represented as a partially ordered set,
where the nature of the elements is irrelevant; (2) a partially ordered set has
a natural structure, which depends on and is determined by the set and order
alone; (3) the natural structure can be found by the minimization of a universal
functional, proposed in this paper; and (4) the structure is, in turn, a partially
ordered set with structure of its own, giving rise to feedback and resulting in
a hierarchy of structures. Experimental evidence is discussed, and the parallel
computer simulation in Section 3 provides a stunning demonstration of the pro-
gressive build up of intelligence by inference and feedback, which can actually
be seen in each iteration.
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2 Theory

A partial order is a set of precedence relations. Any mathematical expression
implies a set and a partial order. For example a = f(b, c) implies set {a, b, c}
and establishes b and c as predecessors of a, meaning they must be given before
a can be calculated. The notation is b < a, c < a, where “<” is read “precedes.”

Procedures for describing a system as a partially ordered set are now exam-
ined. Consider first any system amenable to mathematical analysis. The first
step in the analysis is to create a mathematical model, introduce variables to
describe the model, and write equations describing constraints, interactions and
laws of evolution. But the variables and equations define not only the model but
also a partially ordered set. In fact, the variables form the set, and the equations
establish a partial order among them. The order only states the well known fact
that some variables are dependent and others independent.

The task of describing a system as a partially ordered set is simplified when
a computer simulation is available. The simulation code provides a display of the
equations and required calculations in full detail, with all the information about
variables and precedence. It should be possible to develop a parser to automate
the conversion. The author has developed one for single-assignment C.

Sometimes, a mathematical description is not even necessary. For example,
the brain can be considered as a set of neurons with a partial order defined
by their synaptic connections: neurons A, B and C precede neuron D if the
simultaneous firing of A, B and C causes D to fire. The idea is expanded at the
end of this Section.

The theory is presented next with the help of a simple example. Let S be a
finite set and ω a partial order on S, for example:

S = {a, b, c, d, e, f} (1)
ω = {a < c, b < c, c < f, d < e, e < f}

The pair (S, ω) fully specifies the problem at hand. The nature of the elements
of S is irrelevant. The standard notation for the problem defined by Eq. (1) is
6(ac, bc, cf, de, ef), where the number on the left is the size of the set, |S| = 6.

A set with n elements has n! permutations. Some are compatible with the
partial order, some are not. The compatible permutations are said to be legal.
Let Π be the set of all legal permutations, and let π ∈ Π be one of them.
If the elements of the set are numbered in the order in which they appear in
permutation π, then the distance between two elements in π is the difference
between their numbers, and the cost Lω(π) of permutation π relative to partial
order ω is twice the sum of the distances between the elements of each relation:

Lω(π) = 2
∑
ω

d(ε, ε′), (2)

where ε, ε′ are elements in S and ε < ε′ is a relation in ω. To simplify notation,
the subscript ω will be omitted. The reason for the factor 2 is explained in
[13], and it has a profound physical meaning. Cost L(π) is a functional, a map
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from the set of permutations to numbers. For the example of Eq. (1), there are
6! = 720 permutations, only 20 of which are legal, π = (b, d, a, e, c, f) is one of
them, the distance from b to c in π is 4, and the cost of π is 22. A search in set
Π indicates the existence of many minima, some of them local, others global,
even if S is small. At each minimum, there exists a set of permutations, say Πm

at minimum m, which has the following remarkable property:

Proposition 1. Set Πm is either a permutation group of set S or a
generator for a permutation group of S. In either case, it induces a block
system in set S.

The block system is the structure being sought. A block system is a partition of
set S into disjoint subsets called blocks. The elements in each block are equiv-
alent, because they stay together inside the block (but in any order) for all
permutations of Πm. The blocks are invariant under the action of Πm, because
they are the same for all permutations in Πm. In the block system, the ele-
ments of S appear organized and associated, thus creating logical meaning. The
emergence of the blocks amounts to inference, because they represent a new
conclusion obtained from the facts expressed by Eq. (1), where the organization
and associations did not exist. And all of this is natural and mathematical.

Feedback also arises naturally as a mathematical phenomenon. A block sys-
tem resulting from Proposition 1 is, in turn, a set (of subsets of S), and has a
partial order induced by the original partial order ω. Proposition 1 applies to
the block system just as effectively as it did to the original set S, and repeated
application of Proposition 1 results in a hierarchy of block systems.

Functional L is locally defined. Its value is a global property of the system,
but the definition is in terms of distances, which are local values. L can be
minimized by any local process completely unrelated to and unaware of any
global effects that the minimization can cause. Any set consisting of elements
capable of minimizing some measure of their interactions with their neighbors
will also minimize L and produce the global, unintended effect of the emergence
of structures. This is precisely where the transition from a local behavior to a
global phenomenon takes place.

In view of all of which, it is hereby proposed that the process that finds the
block systems is the core process of intelligence, that intelligence finds its origin
in that process, and that the core process can be easily implemented on any
regular computer. Intelligent systems are self-integrated and indivisible [14], but
a simple aggregate of intelligent systems (a society) is not intelligent, because
the systems can not integrate. For finite sets, all calculations in this theory are
computable and deterministic. However, they are unpredictable in practice for
all but the smallest sets. The size of set Π is of the order of n!, where n is the
size of the set. But 79! ≈ 1080, and 1080 is the total number of atoms in the
universe. Real-world sets are much larger than 79, and predictable calculations
are not possible. The present work focuses on small systems, because they must
be understood before dealing with larger systems, and they are easy to study
without running into computational difficulties.



Emergence is the key to intelligence 5

For the example of Eq. (1), there is only one global minimum with L = 16,
and the following 2 permutations of S are found there:

(a b c d e f) (3)
(b a c d e f)

The block system induced by the 2 permutations in set S is (a, b)(c)(d)(e)(f),
which contains only one non-trivial block. The order in which the blocks appear,
and the association between a and b in the first block, did not exist in Eq. (1).
They represent the build up of intelligence in the first iteration.

To every permutation of a partially ordered set there corresponds a canonical
matrix. The canonical matrix for the system of Eq. (1) under permutation π′ =
(d b a e c f), which is legal and has a cost of 22, is as follows:

d b a e c f
d C
b C
a C
e A C
c A A C
f A A C

(4)

The matrix is square, lower-triangular, and sparse [9]. Rows and columns corre-
spond to the elements of S, and appear in the order of permutation π′. Following
previous conventions, all diagonal elements contain C. The off-diagonal elements
correspond to the partial order ω: if ε < ε′ is a relation in ω, then element (ε′, ε)
is marked with an A in the matrix. One important property of the matrix is that
symmetric permutations that leave all A’s in the lower triangle always result in
legal permutations of set S.

In the canonical matrix, a line from a C on the diagonal, to an A in the
same column, to the C in the same row as the last A, is called a flux line. For
example, the line from the C in position (b, b), to the A in position (c, b), to the
C in position (c, c), is a flux line. The length of this flux line measured in cells
is 6, which is precisely the cost of relation b < c in permutation π′. It follows
that the total length of all flux lines is, precisely, the cost of permutation π′, and
that the effect of the minimization of the cost is to symmetrically permute the
canonical matrix in such a way that the A’s are brought as close to the diagonal
as possible.

A simple, but viable model of the brain can be developed based on this
analogy. If the elements of set S are neurons, and their connections correspond
to the relations in the partial order, then the connections correspond to the flux
lines and the length of the connections corresponds to the length of the flux lines.
But the neurons are known to try to shorten their connections or even migrate
in order to preserve resources. When they do that, they also inadvertently and
without purpose minimize the functional of Eq. (2) and physically cluster to
form the structures described in this paper. This mechanism can explain both
memory and intelligence. The clusters of neurons are called neural cliques and
their existence has been confirmed [15].



6 Sergio Pissanetzky

a

b

c

d

e f

g h

i

j

(a) (b)

b e g d f h i a c j

b e g d f h i a c j

b e g d f h i a c j

b e g d f h i a c j

b e g d f h i a c j

b e g d f h i a c j

b e g d f h i a c j

L1

L2

L3

L4

L5

L6

L7

Fig. 1. (a) The solution to the problem of parallel programming of Section 3 and (b)
UML diagram of the 7-level hierarchy of objects representing the complete solution for
that problem. All structures shown are contained in Eq. (5).

3 Small systems

The experiment for this paper is a simple model of a parallel computer with
an undetermined number of CPU’s, which has to execute a set of 10 tasks with
9 inter-dependencies. The problem is how to assign the tasks to the CPU’s to
improve performance. The analysis of 6 different small systems is needed to solve
the problem. The first system is Σ1, specified as follows:

Σ1 : (S1, ω1)
S1 = {a, b, c, d, e, f, g, h, i, j} (5)
ω1 = {a < c, b < e, c < j, d < f, e < g, f < h, g < i, h < i, i < j}

The 10 tasks are the elements of S and their inter-dependencies are listed as
relations in the partial order. This problem is very simple. Any human analyst
can solve it in a few minutes. The result is shown in Fig. 1(a). However, the point
of the experiment is that the computer can solve the problem without having been
told how to do so, using only the minimization of the functional. If it does, and
if the result is correct, then the claim can be made that the algorithm operates
from first principles and is intelligent.

System Σ1 has 720 legal permutations and a cost range from 28 (with 2
permutations) to 46 (with 180 permutations). It has 2 global minima with 2
permutations having a cost of 28:

(b e g d f h i a c j) (6)
(d f h b e g i a c j)

The block system they induce in set S1 is β1 = (b e)(g)(d f)(h)(i)(a)(c)(j). This
result is illustrated as a UML diagram in Fig. 1(b), where level L1 corresponds
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to set S1, and level L2 to the block system β1. The organization of the permu-
tations and the association of b with e and of d with f represent the build-up of
intelligence in the first iteration.

As discussed above, the process of structure generation is recurrent. In fact,
block system β1 is itself a set, say S2, the elements of which are the 8 subsets of
which β1 consists. Set S2 also has a partial order, say ω2, induced by the partial
order ω1 of Eq. (5). S2 and ω2 define a new system, say Σ2, as follows:

Σ2 : (S2, ω2)
S2 = {a′, b′, c′, d′, e′, f ′, g′, h′} (7)
ω2 = {a′ < b′, b′ < e′, c′ < d′, d′ < e′, e′ < h′, f ′ < g′, g′ < h′},

where a′ = (b e), b′ = (g), c′ = (d f), d′ = (h), e′ = (i), f ′ = (a), g′ = (c), and
h′ = (j). System Σ2 has 8 elements and 7 precedence relations, and corresponds
to level L2 in Fig. 1(b). It was found to have 126 legal permutations and a cost
range of 22 (with 2 permutations) to 34 (with 36 permutations). It has 2 global
minima, 4 local minima, 1 global maximum, and no local maxima. The set of 2
permutations at the global minimum is:

(a′ b′ c′ d′ e′ f ′ g′ h′) (8)
(c′ d′ a′ b′ e′ f ′ g′ h′)

and the block system induced in S2 is β2 = (a′ b′)(c′ d′)(e′)(f ′)(g′)(h′). Block
system β2 corresponds to level L3 in Fig. 1(b). But block system β2 is a set with
6 elements, say S3, and the partial order ω2 induces into it another partial order,
say ω3. The entire process can be repeated several more times, resulting in the
7-level structure depicted in the figure. As the reader can see, the diagram has a
remarkable similarity with the inheritance hierarchies used in OO programming.
It is proposed in this work that the diagram is, in fact, the rigorous mathematical
equivalent of an inheritance hierarchy in OOP. In all, the following 6 small
systems are visited by the feedback loop:

System Levels System definition Associations
Σ1 L1/L2 10(ac, be, cj, df, eg, fh, gi, hi, ij) be, df
Σ2 L2/L3 8(ab, be, cd, de, eh, fg, gh) beg, dfh
Σ3 L3/L4 6(ac, bc, cf, de, ef) beg|dfh
Σ4 L4/L5 5(ab, be, cd, de) (beg|dfh)i, ac
Σ5 L5/L6 3(ac, bc) (beg|dfh)i|ac
Σ6 L6/L7 2(ab) ((beg|dfh)i|ac)j

(9)

In the last column, associations of immediate precedence are indicated by writing
the symbols together, such as dfh, while the symbol “|” indicates parallelism, an
association without precedence. System Σ3 in the table is in fact the same system
defined in Eq. (1) and discussed in Section 2. This example provides a dramatic
demonstration of the role of emergence as the source of first intelligence from
a fundamental mathematical principle and the build up of higher intelligence.
The results at each step of the process are depicted in Fig. 1(b). Iteration 1
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Fig. 2. Computer simulation of higher brain functions. Solid lines indicate easily ob-
servable and measurable features, while dashed lines identify features that are not
relevant for the present study.

organizes the set and associates be and df , each with immediate precedence and
each encapsulated in a separate block. Iteration 2 associates blocks beg and dfh,
and iteration 3 associates beg|dfh together without precedence, thus effectively
creating a parallel computer with 2 processors. Successive iterations continue
reusing previously acquired intelligence to build associations, and the combined
effects of inference, feedback and encapsulation are clearly visible. The final
solution is identical to the human analyst’s solution of Fig 1(a).

4 Experimental evidence

Computer experiments that simulate higher brain functions are easy to perform.
The brain itself is irrelevant, and is treated as a black box where only the input
and output matter. There exist plenty of carefully documented actual input-
output observations with which the simulated results can be readily compared.
Figure 2 illustrates the concept.

Information that a person can acquire from the environment, such as a visual
image, an observation made by a scientist, or a problem statement received by
a computer analyst, is made available as training material for the simulated
emergence dynamics (see §IV, “Basics of MMC supervised learning”, in [13]).
The natural objects that the brain creates are the images we recognize, the
theories of Science, or the object-oriented designs the analyst develops. They can
be directly compared with the corresponding objects predicted by the simulation.

Three such experiments have been previously published, and one more is
reported here in Section 3. The three experiments were further discussed in
[14]. The experiments are simple, but they are sufficient for a proof of principle,
and they are important because they set directions for future research. The
first experiment [11] is in Newtonian Mechanics, and consists of information
describing one time step of the motion of a mass particle in three-dimensional
space under the action of gravity. A human scientist immediately discovers the
following 4 facts: there are 3 components of motion, 2 separate variables must
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be used to describe the motion, the 3 components are independent, and the
2 variables are independent. For the simulation, the problem is described as a
partially ordered set with 18 elements and 12 relations, and minimization of the
functional of emergence immediately discovers a block hierarchy separated into 3
independent components, each in turn separated into 2 independent components,
in full agreement with the human scientist.

The second experiment is a case study on refactoring [13], based on a Java
program used in many European universities to teach the subject. The program
was first converted to C in order to eliminate all object-oriented information, and
then represented by a set with 33 elements and a partial order with 55 relations.
After minimization of the functional of emergence, a hierarchy of block systems
was obtained, which was in excellent agreement with the original Java classes
that a human analyst had designed. The conversion of the block systems to Java
or C# was not attempted, but it should be easy to automate.

The last experiment is one of image recognition [12], where a set of 167 points
distributed on the plane is given. Human observers asked to interpret the image
immediately agree that it shows 3 clusters, but disagree when asked to describe
the clusters. The number 3 is not explicit in the picture, it has to be found by
interpretation. A regular network of cells representing a retina was superposed
on the picture. The system was simulated with a set of 1433 elements, and the
relations in the partial order were obtained by associating the points with the
cells that contained them. Minimization of the functional of emergence yielded
a hierarchy of block systems with 3 blocks in the highest level, indicating the
separation of the set into 3 clusters, in full agreement with the human observer.
In addition, more detailed but not meaningful structure was found in each of
the clusters, again in full agreement with the human observer.

One more experiment, the experiment on parallel programming discussed in
Section 3 of this paper, is also in full agreement with the human programmer.
All four problems have been solved by minimization of the same functional, and
by the same algorithm, which is local and knows nothing about the particular
problems other than the input S and ω. The ability to solve problems of any
kind, when and where they arise, directly from input and without the need for
any problem-specific means, is key for intelligence.

5 Concluding remarks

This work has proposed a mathematical theory where a partially ordered set
representing a physical system subject to the action of a dissipative dynami-
cal process, naturally gives rise to the phenomena of emergence, feedback, and
inference, and becomes self-organized into a hierarchy of block systems where
successive levels represent a progressive build up of intelligence. The set serves
as a knowledge base with natural support for all the phenomena. The dynamics
only dissipates the functional, in a local manner, until exhaustion, and is un-
aware of the existence of a population or of any global effects that may follow.
The functional is universal, defined in terms of the local conditions in the sys-
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tem, amenable to be minimized by local dynamics, and providing the only logical
connection between the local dynamics and the resulting global phenomena.

Because the theory explains the origin of intelligence from first principles
and its growth by feedback and inference, because the features just described
are normally associated with intelligence, and because of the supporting exper-
imental evidence, also proposed is the working hypothesis that the theory does
describe the origin of intelligence, provides the foundation for a variational the-
ory of intelligence in natural and artificial systems, including the human brain,
and allows intelligent behavior to be mathematically described by the elegant
principle of optimization.

Important consequences will follow. The value of a variational principle is its
unifying power. This work offers many possibilities for new research in AI and
AGI, as well as an unprecedented opportunity to unify these fragmented fields.
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